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NOAA’s fine-resolution GSRM:  FV3GFS/X-SHiELD

SHiELD 40-day DYAMOND run,  S.-J. Lin and Xi Chen, GFDL



Outline

• Can GSRMs (global, dx = 2-5 km, dz ~200-500 m) do precipitation better than GCMs?

• GSRMs, like GCMs, have biases (and therefore need tuning)

• GSRMs are sensitive to their microphysics parameterizations

• How better GSRM rainfall simulations could lead to better GCM rainfall simulations 



3 km SHiELD simulates mean rainfall better than 200 km FV3GFS

• 3 km rainfall bias much smaller over sub-Saharan Africa and Himalayas

• Afternoon maximum of precipitation over land is also better simulated

(GPCP)

Spencer Clark (Vulcan/GFDL)



3 km GSRM improves diurnal cycle of precip over land

• In SHiELD, 25 km and coarser grids all make too weak a diurnal cycle over land

• 25 km with no deep convection stronger but has a 4 hr phase delay

• 3 km has too strong afternoon peak compared to IMERG

✓ Can GSRMs do precipitation better than GCMs?  - yes, but not perfect

Spencer Clark (Vulcan/GFDL)



TC dependence on grid resolution in ICON GSRM

With conv param, coarse GCM → few TCs

W/o conv param, coarse GCM → excess TCs

✓ TC rainfall better in GSRM than coarse GCM

Judt et al. 2020



Do GSRMs simulate organized precipitating convection similarly?

DYAMOND intercomparison: 40 day free run starting 1 Aug 2016, specified SST 

(Stevens et al. 2019); 4 US + 4 European + 1 Japanese GSRMs, 3-20x real time

✓ Zonal mean and diurnal cycle are a bit more 
similar than a comparable sample of GCMs.

Stevens et al. 2019

Stevens et al. 2019



TC track statistics are qualitatively similar between DYAMOND GSRMs

Judt et al. 2020



But deep convective structures and related clouds vary between GSRMs 

Tropical cyclones Sahel deep convective squall lines

PBL, microphysics, land params + dycore
all cause differences between GSRMs

Jacqueline Nugent, UW PIRE-Cirrus

Judt et al. 2020



Ice microphysics matters in GCRMs

Morrison

Thompson

SAM 

1-moment

Frozen Water Path (g m-2)

DARDAR analysis 

Sokol and Hartmann 2020
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➢ Global SAM, dx ~ 4 km, 75 layers, 5-day nudged hindcasts

➢ Morrison microphysics has too much thick anvil cirrus

➢ Thompson microphysics has mostly thin cirrus

➢ This explains their large tropical OLR biases 

Forecast day 2-5, 15 S-15 N

268 W/m2

259 W/m2

228 W/m2

OLR  251 W/m2

Rachel Atlas UW PIRE-Cirrus`



Use machine learning to bias-correct a GCM to evolve like a GSRM

Goal:  Train an ML correction to supplement the physical parameterizations of a coarse-

grid climate model with a 25-200 km grid so it evolves like a ‘reference’ fine-grid GSRM

• Aquaplanet:  Brenowitz and Bretherton (2018, 2019), Yuval and O’Gorman (2020)

• Real geography is more challenging.  

• A small ML team at Vulcan Climate Modeling, in partnership with GFDL, has adapted 

FV3GFS to this task using ‘pressure-level coarsening’ to horizontally average fine-grid 

outputs to coarse grid.  



Nudge coarse model to fine for ML training 

𝑎 𝑡, 𝑥, 𝑦, 𝑝 : advected scalar (e.g. humidity).   

Coarsened fine-res scalar (known) 𝑎𝑓 𝑡, 𝑥, 𝑦, 𝑝

Nudged coarse-resolution scalar 𝑎𝑛 𝑡, 𝑥, 𝑦, 𝑝 which tracks  𝑎𝑓 𝑡, 𝑥, 𝑦, 𝑝 :

𝜕𝑎𝑛

𝜕𝑡
=−v𝑛 ⋅ ∇𝑎𝑛 + 𝑄𝑎

𝑝
+ ∆𝑄𝑎

𝑁 ≅
𝜕𝑎𝑓

𝜕𝑡

→ Nudging tendency   ∆𝑄𝑎
𝑁 = 

𝑎𝑓−𝑎𝑛

𝜏

Nudging time scale 𝛕 = 3 hours used for 200 km coarse & 3 km fine scales

• Slow enough to keep 𝑎𝑛 near its ‘slow manifold’

• Fast enough to keep 𝑎𝑛 near the coarsened fine model ത𝑎𝑓

Machine learn the nudging tendency as function of nudged model column state 

and use the resulting ∆𝑄𝑎
𝑀𝐿 as a forecast correction to the coarse model: 

𝜕𝑎𝑐

𝜕𝑡
=−v𝑐 ⋅ ∇𝑎𝑐 + 𝑄𝑎

𝑝
+ ∆𝑄𝑎

𝑀𝐿



Machine learning: model training

Random Forest

Neural Network

insolation
land/sea  mask

surface 
elevation

∆𝑄𝑎
𝑀𝐿

From available training output (e. g. nudging tendencies every 15 min for 40 d), subset to:
Training set = 1.7M samples (130 initializations x 13824 grid columns)

Test set = 660K samples (48 initializations x 13824 grid columns)

Train/test data separated by split date to minimize correlated data across sets



Improved weather forecast skill

Reference

Simulation

Two simulations initialized with state 
of atmosphere on August 5, 2016

Error vs. forecast time
Lower is better

Example:  500 hPa height

Vulcan Climate Modeling



15
Improvements in precipitation bias

• N2F improves 35-day mean precipitation bias pattern by 20% (RF)/15 % (NN)

• However, biases increase in dry subtropics, and both have overall wet biases

Vulcan Climate Modeling



Conclusions

• GSRMs can simulate precipitation better than GCMs over land and mountains

• GSRMs simulate convective structures such as TCs and squall lines but with 
intermodel differences due to their remaining parameterizations & dycore

• Uncertain ice microphysics parameterizations strongly affect radiative fluxes in 
GSRMs, which will feed back on large-scale circulations and precipitation patterns

• Machine learning shows promise in leveraging improved GSRM representation of 
physical processes to coarser-grid GCMs that we can run for decades to centuries

• A vital challenge is tuning GSRM cloud and land surface parameterizations to 
achieve their potential for weather and climate fidelity.  Many processes can be 
tuned in a computationally affordable way on weather timescales using hindcasts.



Coarse-resolution dynamics and parameterized physics

Apparent heating (K/day)

Apparent moistening 
(g/kg/day)

SW+ LW radiation, latent heating, etc

u,v
Apparent momentum source 
(m/s/day)

Advection (numerical solver)



Column physics approximation

Physical parameterizations depend on the local 
atmospheric column conditions

• Typical parameterization inputs

• Profiles of humidity, temperature, winds

• sunlight, surface properties…

• Typical parameterization outputs:

• Tendencies of humidity, temperature, winds

• clouds, rain, snow….

This simplification is most appropriate when 
grid boxes are much wider than they are high.

Single Atmospheric Column

Image courtesy of the U.S. Department of Energy 
Atmospheric Radiation Measurement (ARM) user facility.



Conclusions

• At Vulcan, we have developed a sophisticated cloud-based workflow for 
applying Python-based machine learning to a full-complexity operational global 
numerical weather forecast model written in Fortran. 

• We have developed machine learning schemes that improve the skill of global 
weather forecasts and their time-mean rainfall distribution.

• Our current ML schemes need to add physical constraints that keep them 
from excessively drifting from a reference climate.


